
Int. J. Heat Moss Transfer. Vol. 16, pp. 359-369. Pergamon Press 1973. Printed m Great Britain 

EFFECTS OF UPSTREAM AND DOWNSTREAM 
BOUNDARY CONDITIONS ON HEAT (MASS) TRANSFER 

WITH AXIAL DIFFUSION 

YEHUDA TAITEL 

School of Engineering, Tel Aviv University, Ramat-Aviv, Israel 

and 

M. BENTWICH and ABRAHAM TAMIB 

Faculty of Engineering Sciences, University’ of the Negev, Beer-Sheva, Israel 

(Received 15 February 1972 andin revisedform 31 May 1972) 

Abstract-The authors investigate systematically the role of upstream and downstream boundary condi- 
tions on the heat (or mass) transfer when axial diffusion is effective. As examples, three similar cases of plug 
flow in channels flows are studied. In all caseS there is a central heating section and the fluid flows from there 
into an insulated semi-infinite conduit. The situations prevailing upstream of this section vary. 

As expected it is found that these situations have a substantial influence when the PCcltt number is low, 
and the heating section is short. 

The analysis is carried out assuming a uniform profile. It is, nevertheless, less than straightforward 
because in all three cases the boundary conditions are mixed. Solutions are obtained in the form of Fourier 

Integrals the inversion of which is carried out numerically. 
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NOMENCLATURE 

a constant, used for lower limit of 
integration; 
a function, equation (11); 
dimensionless length of the heating sec- 
tion, Bp/2 L ; 
axial length of the heating section, also 
a function, equation (11’); 
heat capacity at constant pressure; 
a constant, used for upper limit of integra- 
tion; 
transformed dimensionless flux at y = 

PI2 ; 
heat transfer coefficient; 
matrix or vector, equations (A.4), (A.6) 
and (A.7); 
index of the finite difference subdivisions, 
also the symbol for imaginary numbers; 
index of the finite difference subdivisions; 
thermal conductivity; 

K, kernel; 
L, half width of the channel: 
Nu, Nusselt number, hL/k; 

PC&t number, p C’C,L/k; 
heat flux; 
rate of heat transferred; 
the variable 1x - 51 or Ix + 51, equations 
(AS) and (A.7); 
area; 
local temperature; 
dimensionless dependent variable, 
dexp(-x); 
velocity; 
dimensionless coordinate, Xp/2L; 
axis along stream lines (Fig. 1); 
dimensionless coordinate, Yp/2L; 
axis perpendicular to streamlines (Fig. 1); 
J(1 + 4n2n2/p2); 
variable of integration; 
variable of integration; 
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57 

PT 

43 

variable of integration; 
density; 
dimensionless temperature. 

Subscripts and superscripts 

m, running index; 

n, running index; 

W, at the heating walls; 
0, inlet conditions; 

-7 average. 

INTRODUCTION 

MOST of the available analytic studies of con- 
ductive-convective heat (or mass) transfer 
patterns are restricted to high P&cl& numbers. 
These analyses are based on the assumption that 
the term which represents axial conduction in 
the dilhtsion equation, @T/8X2, is negligible. 
Here, T(X,Y) is the temperature distribution, 
(X, Y) are Cartesian co-ordinates and the flow is 
X directed. However if the P6clet number is low 
that term cannot be omitted. Its inclusion 
requires careful consideration of both the up- 
stream and downstream boundary conditions. 
It seems that the effects of these has been some- 
what overlooked. The role of these conditions 
when axial diffusion is effective is investigated 
in this work by considering and then comparing 
various heat and mass concentration distribu- 
tions in a channel plug flow. 

The physical models considered are outlined 
in Fig. 1. These consist of an infinite or semi- 
infinite channels with their central section 
exposed to a heating surface. On the latter either 
the temperature, T,, or else the heat flux, qw, is 
prescribed. Both T,, and q,, are assumed to be 
uniform. From the heated section the fluid flows 
into an insulated semi-infinite conduit. The 
situations prevailing upstream of the heating 
section vary from case to case. In model (i) the 
fluid enters the heated section through a semi- 
infinite insulated duct. The temperature at 
X = - x is T’,. This model is the appropriate 
representation for exchangers in which the fluid 
is guided into and out of the exchange-section 
through long insulated conduits. Model (ii) 

Mo#L 0) 

al/aY =O T= Tr; q=q, 3T/)Y =o 
/,,1,111, ,1//,,11, I 
To(e-o)=To ; - _~“_.- -.- - -. - _ JT/dX(X- w.0 X - -. - - _. 

MODEL(ii) 

T=To T=Tw ; q=q, “//////// 

T(X-m)=To - -.- - ~__z”_____--~ 

MODEL (iii) 

Y 

t --k-l T=Tr; q=q, “I,////// 
I 

L_LS”_______,X 
T=To/: L 

L 
,,,,/,,,7 

FIG. 1. Physical model and boundary conditions of the three 
representative models. 

represents exchangers in which the fluid under- 
goes preheating before entering the main part 
of the exchanger. Thus in model (ii) the entire 
surface of the duct upstream of the heating 
section is kept at a constant temperature T,. In 
model (iii) the incoming fluid enters the heated 
section straight from a well mixed container in 
which the prevailing temperature is T, . 

Note that although these three models repre- 
sent a good number of physically realizable 
situations, when axial diffusion is ignored the 
differences between the situations prevailing 
upstream have no impact on the transfer 
patterns. Indeed if the term a2T/aX2 of the 
diffusion equation is omitted then the upstream 
boundary conditions at the entrance to the 
heating section reads T = T, at X = 0 in all 
three cases. The results obtained here show that 
the transfer patterns vary from model to model. 

Discussions of the effects of axial diffusion in a 
channel or pipe flow have appeared in the 
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literature. Cases in which the upstream condition 
is that of model (iii) were treated by Rotem [l], 
Singh [2], Boyadzhiev [3], Hsu [4] and 
Schneider [5]. Situations in which there is 
upstream heating or insulated incoming conduits 
as in models (ii) and (i), respectively, are dis- 
cussed by Schneider [5], Hsu [6,7] and Jones 
[8]. Note that in the works cited the heating 
section is infinitely long. Therefore, unlike 
these, the proposed analysis reveals the combined 
influence of the upstream and downstream con- 
dition. Although the authors restrict themselves 
to the simple geometry of two dimensional 
channel with uniform velocity profile (plug flow), 
the problems under discussion is still mathe- 
matically difficult because the imposed boundary 
conditions are mixed. However it is expected 
that the relative effect of the different boundary 
conditions will be similar also for pipe flow 
and other ducts with non uniform profiles. 

FORMULATION 

In all three cases the energy equation reads 

,C&=k(~+~) (1) 

where (X, Y) are Cartesian co-ordinates, U is the 
velocity of the stream, k is the conductivity of 
the liquid, and C, is its heat capacity. When use 
is made of the following transformations 

(&Y) = (X,Y)P/2L u E exp(-x)4 

4 - (T - T’,)/(T, - T,) if the temperature is 
prescribed 

4 = k(T - T,)P/%~~ if the flux is 
prescribed 

equation (1) reduces to the following so called 
Helmholtz equation 

($+$)- (2) 

Here L is half the width of the channel and p is 
the PC&t number which is defined thus: 

p = pUC,L/k. 

When the temperature rather than the flux is 
prescribed along the heating section, the follow- 
ing boundary conditions hold for all three 
models, 

au/ay = 0 y=o --oc<x<sc (3) 

u-0 O<Y<Pl2 X400 (4) 

u = exp(-x) Y = PI2 O<x<b (5) 

aulaY = 0 Y = Pi2 b<x< cc (6) 

where b is Bp/2L and B is the axial length of the 
heating section. The conditions that typify 
model (i) are: 

U+O O<Y <P/2 x -+ -z (7) 

au/aY = 0 Y = PI2 --co <x<O. (8) 

For model (ii) condition (7) together with the 
following holds 

u=o Y = PI2 -c?z<x<o (9) 

For the more simplified model (iii) only the 
following condition is prescribed 

u=o OCY<Pl2 x = 0. (IO) 

Note that for all three models the boundary 
conditions are mixed. The analyses will be 
constructed by assuming the flux, au/ay, on 
y = p/2 O<x<b or -cc<x<b is a known 
function f(x). Fourier Integral type of solutions 
for u are then obtained in terms of J: Finally by 
imposing the condition on u along y = p/2, 
O<x<b or y =p/2 -a<x<b one gets a 
Fredholm type of integral equation which 
governs f: There are a number of ways to solve 
the latter, of which the easiest is to transform the 
integral equation into a set of algebraic linear 
equations. 

For models (i) and (iii) the solutions are simpler 
when the flux is prescribed along the heating 
surface. In such cases the following conditions 
hold on the heating surface. 

au/ay = exp C-X) Y = PI2 O<x< 6. (5’) 

Thus the flux is prescribed over the entire range 
- cc < x < cc so that the boundary conditions 



362 YEHUDA TAITEL, M. BENTWICH and ABRAHAM TAMER 

are no longer of the mixed type. For these two 
models f(x) in known a Priori to be equal to 
exp ( - x). 

Model (ii) is solved by defining j’(x) for the 
range - oc < x < 0 and obtaining a Fredholm 
type of integral equation for it. 

SOLUTIONS 

If the method of separation of variables is 
used in the treatments of model (i) and (ii) one 
finds that the general solution of equation (2) 
which satisfies condition (3) has the form 

u = 7 A(L) cash [J(J.’ + l)y] exp (Ux) dl. (ii) 
-CG 

Differentiating with respect to y and substituting 
y = p/2 and equating the derivative to f(x), one 
finds that A@.) is governed by the following 
integral equation: 

f(x) = 4 A(&,/(J2 + f) sinh &/XL2 + l)p/2) 
-30 

x exp (iix) dl. (12) 

Then by using the properties of the Fourier 
Integrals the last relationship is inverted. It is 
thus found that u is given by 

u = jK(x,y,No) d5 (13) 
0 

where a and c, the upper and lower limits vary 
from case to case (see Table 1). The Kernel is 
given by 

m 

i 
cash [J(n’ + l)y] ei2(x-0 

,,/(A” + 1)sinh [,/(A” + l)p/23 d’ 
-co 

(14) 
and it can be easily calculated because the 
integrand has simple poles along the imaginary 
axis in the complex II plane at 

1, = + iJ(1 + 4n27r2/p2) = 1_ i/3, 

Equations (13), (15) and (16) represent the solu- 
tion for u which satisfy the governing equation, 
the conditions prescribed at y = 0, x + -t S, 
x-+ -aandalongb<x< oc,y=p/2.From 
the remaining conditions f is obtained. If the 
conditions are not mixed f’ is given explicitly. 
When the conditions are mixed f(x) is governed 

by 

&GP/~) = ~~(~)K(x,~/~,~) dt (17) 
(I 

where this equation holds over the entire range 

n=0,1,2 ,... . 

- cc < x < b or part thereof. The solution of 
equation (17) is discussed in the Appendix. All 
these cases are summarized below. 

Therefore, by appending to the integral along Note that in the cases whenf is given explicitly, 
the real axis an integral along a very large arch 4 can be obtained by straightforward integra- 
in the upper or the lower half of the ,J plane and tion. Thus for model (i) with prescribed constant 
utilizing the Cauchy Theorem one gets flux 4 is given by: 

K = kexp(--lx - 51) 

+ 2 m cos~2~~~/p)exp(- /x - 518,) 

P c (-WY, . 
(15) 

II=1 

The extension of this solution to model (iii) is 
immediate. In view of condition (10) the expres- 
sion for u is written as follows 

u =co B(J)cosh [J(A” + l)y] sin (Ax) dl 
d 

(11’) 

Using the properties of the Fourier Sine trans- 
form one finds that in this case too the form (13) 
holds. However for model (iii) K is given by 

K =$wHx -l]) - exp(-[x + [I)] 

+2 to exp(-Bnlx-~i)-expt-P,lx+51> 
P c (- W” 

n=l 

x cos(+) (16) 



EFFECTS OF UPSTREAM AND DOWNSTREAM BOUNDARY CONDITIONS 363 

Model Quantity Kernel f is given by 
prescribed on 
heating surface 

(i) 

temperature 

--. 

flux 

(15) S is obtained from equation (17) with 
a=0 c=b u(x,p/2) = exp( - x) 0 < x < b 

-..._ 

(15) a = 0 c = b S(x) = exp(-x) O<X<b 

temperature (15) 

(ii) 
flux (15) 

- 

f is obtained from equation (17) with 
a = - s; c = b u(x,p/2) = exp(-x) O<r<b 

= 0 _ K <x<o 

for sub-range 0 < x < b f = exp(-x) 
for sub-range- co < x < 0 f is obtained from 
equation (17) with 
a = - Cc c = 0 u(x,p/2) = 0 -~<x<O 

temperature (16) ,f is obtained from equation (17) with 
a = 0 c = b u(x,p/Z) = exp(-x) 0 < x < b 

(iii) ____.- 

(16) a=0 c=b f=exp(_x) Ocx<b 

Q, =: ; ix + 1 _ ,-Z(b-x, 

m 

+ c co~2n~y/p) 1 - e-*@n-r) 

n=I (- lY& [ #Xl - 1 

+ 1 _ e-W-MJn+~) 

P” + 1 11 

whereas for model (iii) we obtain 

(p -_ 5 ;x _ ,-2(b-Xf + e-2b 

1 _ ,-(b-xfMn+l) 
+ 

8” + 1 

_ ,--Wn-1) _ ;“I; I)-x(iL- “I} 

Equations (18) and (19) are valid in the range 
0 < x < b. If desired, similar expressions can 
be obtained easily for the range - CC to 0 and 
btox. 

RESULTS AND D~CUSSION 

In the definition of the local Nusselt number 
use is made of the mean dimensionless tempera- 

(I8j ture which is given by 

PI2 

(20) 

Evidently the behavior of this quantity is worth 
noting. Compact expressions for (f; are obtained 
by going through rather straightforward integra- 
tion using equations (13), (15) and (16). 

b 

(19) 
(f = !jexi f(t)[e-I”-‘/ _ e-1x+61] d< 

0 for model (iii). 
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Surprisingly both expressions are independent 
of x for x > b and while this must be so when 
axial conduction is neglected this result is not 
that obvious in the case under discussion. Indeed 
if heat is transferred only by convection pUC,$ 
is proportional to Q, the total x directed heat 
transferred along the duct. Since the duct 
leading out of the heating section is insulated 
that quantity must be independent of x. However 
when axial conduction is effective the total x 
directed heat flux is given by the following 
relationship 

PI2 

QapOCpj+#-~)dy. (23) 

0 

Thus constancy of Q does not imply constancy 
of 6 unless the total x-directed diffusion vanishes. 
Evidently this is what happens. This means that 
conduction near the walls and at the core are 
in opposite directions and in complete balance. 

The local Nusselt number is defined by the 
following relationship 

where the subscript w implies that the quantity 
is evaluated at the heating surface. Thus, when 

~ p=w 
Ire/4 

----- P=l 

- - 0 P=O.l I 
0.0 1.0 2.0 3.0 4.0 

It/p2 

FIG. 2. Local Nusselt number for model (ih T, = const. 

----_ p=1 

-.- P=O.l 
O_ I 1 I 

0.0 1.0 20 3.0 40 

X&P 

FIG. 3. Local Nusselt number for model (ii), T, = const. 

the temperature and flux are prescribed 4, 
and (@/LJy),,,, respectively, are equal to unity. 
In Figs. 2-7, Nu is plotted as a function of the 
axial distance. In these, the PkclCt number p 
and the dimensionless length b/p2 serve as 
parameters. Thus these figures contain a sizeable 
amount of information about the influence of 
the axial diffusion. 

It is useful to compare the results obtained 
here with the available ones for very large 
Peclkt number. Under such circumstances the 

1 - PXW 
---- p=l 

- - 0 P=O.l 1 
0.0 1.0 2.0 3.0 4.0 

X# 

FIG. 4. Local Nusselt number for model (iii), T, = const. 
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- P=cD - p-CD 
----- P=l ---- p=, 

---.- p 10.1 -.- P =O.l 

OL I I 1 0 I I I 
0.0 I.0 2.0 3.0 4.0 0.0 I.0 2.0 3.0 4.0 

II/# x/p2 

FIG. 5. Local Nusselt number for model (i), q, = const. FIG. 7. Local Nusselt number for model (iii), q, = const. 

effect of axial conduction is negligible and the and 
solution for prescribed flux and prescribed 
temperature are given, respectively, by 

m_I-~~~cos(lZI:llxy) 

m=O 

n=l 

x cos(T)exp( - y) (261 

( (2m + 
x exp 

1)2x2x 
- 

2P2 > 

- p=aD 

for the range 0 < x < b. Evidently the expres- 
sions for the local Nusselt numbers formed using 

(251 h t ese solutions are functions of x/p’ for any p. 
In other words, when plotted as functions of 
x/p2, the group of curves for all Nusselt numbers 
collapse onto one provided p is sufficiently high 
and axial conduction is neglected. They are 
symbolically designated by p = cc . This is so 
both in the case of prescribed flux and in the 
case of prescribed temperature. Therefore the 
effect of axial diffusion can be conveniently 
studied if the variable x/p’ is adopted as the 
abcissa for all curves. 

The curves representing the local Nusselt 
number for p = cc asymptote x2/4 and 3 for 
the cases of prescribed temperature and pres- 
cribed flux, respectively. The local Nusselt 
number is higher if axial conduction is taken 
into account, and substantially so, if the PC&t 
number is less than unity or when the duct is 

FIG. 6. Local Nusselt number for model (ii), q, = const. short. 
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While the curves representing Nu vs. x/p2 for 
p = 0; decrease monotonically the curves for 
the cases in which axial conduction is accounted 
for are c’ shaped. For the case of the prescribed 
constant wall temperature the Nu approaches 
infinity at x = 0 and x = b. Thus Nu is un- 
bounded not only where there is a step change 
in the prescribed temperature but also where 
the heating section is connected to the insulated 
section. When constant flux is prescribed Nu is 
finite at x = b. At x = 0 Nu is finite for model 
(i), infinite for model (iii) and for model (ii) it 
approaches infinity at some point x,, > 0 and 
is negative in the narrow region 0 < x < x0 
(not seen in Fig. 6). The reason for this is 
because the wall temperature approaches zero 
for x + 0 and 6 is higher than 4, in this region. 
Comparison between the results for the various 
models indicates that the local Nusselt number 
is lowest for model (i). The values of Nu for 
models (ii) and (iii) are close, but that of model 
(iii) are generally slightly higher. Both these 
results as well as those discussed below become 
understandable if one treats the surfaces or 
regions where T is equal to To as a heat sinks. 
That sink is way out at x = - r; in case (i), it 
reaches quite close to the heating section yet 
extends to x = - cc in model (ii) and it is 
downright at the inlet in model (iii). The case 
of model (ii) with constant heat flux is, however, 
somewhat exceptional. Close to the origin 
Nu is negative for model (ii), i.e. less than for 
model (iii). On the other hand for large x (as 
seen in Figs. 6 and 7) Nu for model (ii) is slightly 
higher. 

of constant wall temperature by the average 
heat transfer coefficient in the commonly used 
equation 

- (T, - To) - (T, - T(=y)) 
Q = hS In (T, - T,)/[T, - T(a, y)]’ 

(27) 

In this equation Q is the total heat absorbed by 
the fluid and not necessarily the heat trans- 
ferred from the heating surface. 

The heat provided by the heating section may 
be substantially larger due to “loss” to the heat 
sinks. Note also that the use of equation (27) is 
somewhat modified as compared to its use when 
axial diffusion is absent. At the inlet the tempera- 
ture difference (7;, - To) is used instead of the 
conventional (T, - T(0, y)). Likewise at the 
outlet we use (TV - T(x, y)) instead of 
(T,, - T(b, y)). (Incidently it was shown that 
T(oo, y) and T(b, y) are equal.) This definition 
seems to be a natural generalization of the case - 
where axial diffusion is ignored. Nu, the average 
Nusselt number based on &, is given by 

____ 
Nu=%= -$ln(l -&~,y)). (28) 

3 I 
_ 

I 
’ 2 MODEL (i) ’ 

-~-- MODEL (II) 

-- MODEL (iii) P=m 

For negligible axial diffusion the local Nusselt 
number provides a measure of the heat transfer 
efficiency from the heating surface into the 
fluid. It could be integrated to yield an average 
heat transfer coefficient for the calculation 
of the heat absorbed by the fluid. However, 
when axial diffusion is present this is not 
necessarily true. For a given heating surface we 
will usually be interested in its capability to 
increase the fluid temperature (or concentration) 
at the outlet. This is best represented for the case 

I2 

I- 

‘. 
-.__ -___________________------_----- 

b/p’ 

______------- -- 
0 I I I I I 
0.0 1.0 2.0 3.0 4.0 5.0 6.0 

FIG. 8. Average Nusselt number as a function of the heating 
region length and the PkcclCt number. 
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The values of % for various PC&t numbers models (ii) and particularly (iii) appreciable 
and heating lengths is plotted in Fig. 8. Note amount of heat is lost resulting in a substantial 
that provided the duct is sufficiently long % decrease in 4. 
increases with p and reaches its highest value 
for the case of negligible streamwise diffusion. ACKNOWLEDGEMENT 

The decrease of NM with decreasing p represents The computations connected with this paper were per- 

the effect of heat “lost” by conduction to the 
formed at the computation center of the Tel-Aviv university. 
The writers thanks Mrs. D. Neulander for her assistance in 

upstream sinks if they are finite distance away. obtaining the numerical results presented in this paper. 

Also whether the sinks are close or far upstream 
they tend to keep the heat in the heating section 
rather than have it washed away. Thus the I. 
temperature difference in the heating section is 
small and the heating becomes less efficient. 2, 

-. 
As expected for given p and b, NM, 1s highest for 
model (i) and lowest for (iii). For long heating 3. 
sections the average Nusselt number approaches 
a constant which is equal for all three models. 4. 

For the case of prescribed constant heat flux 
4(x, y)/p is plotted as a function of the heating 5, 
length (see Fig. 9). For negligible axial conduc- 
tion, p = CC, the curve is a straight line. This 
expresses the fact that all the heat supplied to 

6, 

the system is absorbed by the fluid. One gets 
an identical curve for model (i) because in this 7. 
case there is no loss to the surroundings. For 

8. 
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APPENDIX 
Numerical Solution ofthe Integral Equations 

5,~ ’ 1 
,,,,‘// / 

In splitting the range a < x < c to finite intervals and 
converting the Fredhohn integral equation (17) to a set of 
equations and unknowns care must be exercised. Note that 
both K and the solution f contain singular points. Indeed 
by setting y = p/2 in equations (15) and (16) and approxi- 
mating 8, by nn, one finds that the summation in the 
expressions for K diverge for < = x. Also the singularity 
off at x = 0 and x = b has been discussed. However both 
singularities have limited influence on the finite difference 
scheme if the integral equation (17) considering model (iii) 
as an example, is converted to 

b/p* 

where 

j$, Hi, f, = u, (A.1) 

FIG. 9. Mean temperature as a function of the heating region 
length and the P&let number, 4, = const. r;=f[ti-t)Axl i = 1,2,...n (A.2) 
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u, = u[(i - +)Ax,p/Z] (A.3) 

j&r 
Hij= l K[(i - i)Ax, p/2,9] drl j = 1,2,. . n. (A.4) 

(j- I)Ax 

These relationships imply that the range 0 < x < b is split 

into n intervals and the sets of equations (A.1) produce 

solutions for the value offat the mid points of these intervals. 

Thus f(0) and f(b), which may be singular, do not constitute 

the unknowns of the algebraic problem deli& by the last 

four equations. Also although K is unbounded for r = x, H, 
is bounded for i = j. 

The calculations of the elements in the matrices H, is 

fairly straightforward. However it is well worth recording a 

development which allows for a considerable saving of 

computer time. Let Km be given by 
m 

Km =I,-. + 1 (A.9 

11 K-(r) 

I\ 

P 
n=, RG. Al. Scheme of the numerical discretization. 

where I is Ix - (1. Also let K+ be given by the same expres- 

sion except that r is Ix + 51. A vector Hi is constructed Its 

components are the areas under the curve K-(r) shown in 

Fig. A. 1. One can show that these components are given by 

+ *TIFj (A.6) 

where ri = (i - 1)Ax i = I,. . . R In view of the symmetry 

of K+ and Km the elements in the matrix H, is 

“=I 
H,; = H,i-i,t, - H,+j. 

H, = j[e_,,sinh($) + 2~~singh:(Bbx12)] 
n=, 

_ -. 
Note that the vector Hi contam n terms while the matrix H, 
contains n2 terms. Hence, a considerable saving in the number 

i> 1 (A.7) of operations is achieved 

EFFET DES CONDITIONS AUX LIMITES EN AMONT ET EN AVAL SUR LE TRANSFERT 
THERMIQUE (OU MASSIQUE) AVEC DIFFUSION AXIALE 

R&urn&-Les auteurs Ctudient systematiquement le role des conditions aux limites en amont et en aval 
sur le transfert thermique (ou massique) quand la diffusion axiale est effective. On a consid& trois cas 
similaires d’ecoulements ttablis en conduite. Dans tous lea cas, il existe une section centrale chauffante 
et les fluides s’ecoulent depuis celle-ci g l’interieur dune conduitc isol& semi-inlinie. Les configurations 
realis& en amont de cette section varient. 

Comme attendu on trouve que cm configurations ont une forte influence quand le nombre de P&Jet 
est faible et la section chauffantc courte. 

L’analyse men&e en admettant un profil d’&coulement uniforme n’cst ntanmoins pas pas&e car, dans 
les trois cas, les conditions aux limites sont mixtes. Des solutions sont obtenucs sous la forme dint&rakes 

de Fourier dont l’inversion est faite numeriquement. 

AUSWIRKUNGEN VON STROMAUFWARTS UND STROMABWARTS VORLIEGENDEN 
RANDBEDINGUNGEN AUF DEN WARME (STOFF-) TRANSPORT MIT AXIALER LEITUNG 

(BZW. DIFFUSION) 

Zaaammenfamnng-Die Autoren untersuchen systematisch die Rolle von stromaufwarts und stromab- 
warts vorliegenden.Randbedingungen auf den Warme- (oder Stoff-) Transport, wemi in Achsrichtung 
Leitung baw. Diffusion wirkt. Als Beispiel werden drei ahnliche Fglle der PfropfenstrBmung in Kanflen 
behandelt. Bei all diesen Ffllen wird ein mittlerer Kanalabschnitt bcheizt und das Fluid strijmt danach 
in eincn halbunendlichcn adiabaten Kanal. Die Bedingungen stromaufw&ts vor dcm Heiaabschnitt sind 
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Wie erwartet, ergibt sich, dam diese Bedingungen einen wesentlichen Einfluss haben, wear die Peclet- 
Zahl klein und der beheizte Kanalabschnitt kurz ist. 

Die Untersuchung wurde unter Annahme einea gleichfdrmigen Geschwindigkeitsprotiils durchgefiihrt. 
Dies ist dennoch ziemlich kompliziert, weil in allen drei FHllen die Randbedingungen gemischt sind. Die 

L(isungen 1 iegen in Form von Fourier-Integralen vor, deren Auswertung numerisch durchgeftihrt wurde. 

BJIIIHHME I’PAHIIqHLIX YCJIOBIIH BEEPS II BHM3 II0 TEYEHBIO Hi\ 
TEIIJIO- II MACCOIIEPEHOC IIPII HXJIIIHIIII ~II@@YSMM EaOJIb OCH 

AHHOTaqnsr-~CCneRyeTcFl BJIMfIHMe I‘paHWHbIX ycJIOBllfi BBepX II BHM:S "0 TeqeHMK) Ha 

TennonepeHoc (am MacconepeHoc) npu HamIwII CyLUeCTBeHHOir RMtfJ+y3RII B&OJIb OCIf. 

B KavecTBe npllMepOB IG3yYaIOTCR Tpil 110~061IbIX THnn CTepWIeLlOrO Te'IeHMFI B HaHanax. 

HO Bcex 3TIIX CJIyYaSfX HMeeTCR UeHTpaJIbHbII"! yYaCTOK HarpeBa, OTKyJ,;i If(MflKOCTb Te'IeT B 

I43OJIPIpOBaHHbIl% nOJIyOrp3HWIeHHbIfi rpyGonpoe0~. Onpe~en~iomrie ycno~m 13 rwpxHeil 

'laCTI4 3TOrO yYaCTHa I43MeHFIIOTCH. 

IFaK 11 npe~nonaranocb,3TLI yCJIOBIlR OFm3bIllaIOT CyIUeCTBeHHOe I3miRHkIe II;1 Tennoneperrot 

npH ManbIx wmax rIeIc.Ie c1 Manoti annHe yqacTI<a HarpeRa. 

AHa~llnnpoRo~~~ncR~npe~noJIo~eH~~~I, 'IT0 npO@l.?bTe~eHAR ~~anHOMepHbIft,HO OTJIWIHbIti 

OT n~]HMoro, TaK KaK BO BCeX TpeX CJIyYaHX rpaHMqHhIe j'CJIOBMfl RBJIRIOTCR C>leIUaHHbIMIi. 

~e~eHLlRnO~y~eHbIBBYl~eIl~ITe~~aJIOH(Dy~~be,o~~~~eH~feI~OTO~~bIX IIpOl~OJHTCH q‘%CJIeHHbIM 

IIyTeM 


